\begin{tabbing} $\forall$${\it es}$:ES, ${\it Cmd}$:Type, ${\it In}$:AbsInterface(${\it Cmd}$), ${\it isupdate}$:(${\it Cmd}$$\rightarrow\mathbb{B}$), ${\it Sys}$, ${\it Out}$:AbsInterface(Top). \\[0ex](E(${\it In}$) $\subseteq$r E(${\it Sys}$)) \\[0ex]$\Rightarrow$ \=($\forall$$f$:sys{-}antecedent(${\it es}$;${\it Sys}$).\+ \\[0ex]($\forall$$e$:E(${\it In}$). $f$($e$) = $e$ $\in$ E) \\[0ex]$\Rightarrow$ \=($\forall$${\it chain}$:(E(${\it Sys}$)$\rightarrow$(Id List)).\+ \\[0ex]chain{-}consistent($f$;${\it chain}$) \\[0ex]$\Rightarrow$ \=($\forall$$x$, $y$:E(${\it Sys}$).\+ \\[0ex]$x$ is $f$$\ast$($y$) \\[0ex]$\Rightarrow$ \=($\forall$$z$:E(${\it Sys}$).\+ \\[0ex]$y$ $\leq$loc $z$ \\[0ex]$\Rightarrow$ loc($x$) $<<$= loc($f$($z$)) \\[0ex]$\Rightarrow$ ($\exists$$e$:E(${\it Sys}$). (loc($e$) = loc($f$($z$)) $\in$ Id \& $e$ is $f$$\ast$($y$) \& $x$ is $f$$\ast$($e$))))))) \-\-\-\- \end{tabbing}